概述

桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。桶排序 (Bucket sort)的工作的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排)

算法描述

  1. 设置一个定量的数组当作空桶
  2. 遍历输入数据,并且把数据一个一个放到对应的桶里去
  3. 对每个不是空的桶进行排序
  4. 从不是空的桶里把排好序的数据拼接起来

图片演示

img

算法实现

Java代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
package com.ledao;

import java.util.*;

/**
* 桶排序
*
* @author LeDao
*/
public class Test {

public static void main(String[] args) {
// 输入元素均在 [0, 10) 这个区间内
float[] arr = new float[]{0.12f, 2.2f, 8.8f, 7.6f, 7.2f, 6.3f, 9.0f, 1.6f, 5.6f, 2.4f};
bucketSort(arr);
printArray(arr);
}

public static void bucketSort(float[] arr) {
// 新建一个桶的集合
ArrayList<LinkedList<Float>> buckets = new ArrayList<LinkedList<Float>>();
for (int i = 0; i < 10; i++) {
// 新建一个桶,并将其添加到桶的集合中去。
// 由于桶内元素会频繁的插入,所以选择 LinkedList 作为桶的数据结构
buckets.add(new LinkedList<Float>());
}
// 将输入数据全部放入桶中并完成排序
for (float data : arr) {
int index = getBucketIndex(data);
insertSort(buckets.get(index), data);
}
// 将桶中元素全部取出来并放入 arr 中输出
int index = 0;
for (LinkedList<Float> bucket : buckets) {
for (Float data : bucket) {
arr[index++] = data;
}
}
}

/**
* 计算得到输入元素应该放到哪个桶内
*/
public static int getBucketIndex(float data) {
// 这里例子写的比较简单,仅使用浮点数的整数部分作为其桶的索引值
// 实际开发中需要根据场景具体设计
return (int) data;
}

/**
* 我们选择插入排序作为桶内元素排序的方法 每当有一个新元素到来时,我们都调用该方法将其插入到恰当的位置
*/
public static void insertSort(List<Float> bucket, float data) {
ListIterator<Float> it = bucket.listIterator();
boolean insertFlag = true;
while (it.hasNext()) {
if (data <= it.next()) {
it.previous(); // 把迭代器的位置偏移回上一个位置
it.add(data); // 把数据插入到迭代器的当前位置
insertFlag = false;
break;
}
}
if (insertFlag) {
bucket.add(data); // 否则把数据插入到链表末端
}
}

public static void printArray(float[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + ", ");
}
System.out.println();
}
}

运行结果

img

算法分析

桶排序最好情况下使用线性时间O(n),桶排序的时间复杂度,取决与对各个桶之间数据进行排序的时间复杂度,因为其它部分的时间复杂度都为O(n)。很显然,桶划分的越小,各个桶之间的数据越少,排序所用的时间也会越少。但相应的空间消耗就会增大

PS.

搬运地址: 十大经典排序算法(动图演示) - 一像素 - 博客园 (cnblogs.com)